〈〈〈海外文献〉〉〉

World Tech Info.

モンタブリッツ高架橋

著:Roberto Villegas Gómez, Marcos J. Pantaleón Prieto, Roberto Revilla Angulo, Patricia Olazábal Herrero 訳:プレストレストコンクリート海外部会

モンタブリッツ高架橋の建設によって、カンタブリア州に位置するビスエナ(Bisuena) 渓谷をメセタ自動車道(メセタ: イベリア半島の中央に位置する山脈で囲まれた広大な乾燥高原^{課者注})で渡ることが可能となった。本橋は、橋脚高 145 m (ス ペインでもっとも高い),最大支間長 175 m (張出し架設工法),車道幅員 26.1 m (1 室箱桁断面形状)など,大規模かつ特 殊な構造形状であり、道路としての基本性を有することはもちろん、周辺環境に適合した価値ある公共施設である。

キーワード:高架橋,特殊橋,張出し架設,PC箱桁,高橋脚,幾何学的非線形,風洞試験

1. はじめに

開発省によって建設されたメセタ自動車道の開通は, カンタブリア地方にイベリア半島中央への重要かつ高度 なアクセス性能をもたらした。この道路は,中央分離帯 を有する片側2車線道路であり,環境に配慮した高度な 技術により,非常に美しくも険しい地形のカンタブリア 山脈を横断している。本橋が跨ぐのは,急斜面で谷底の 狭いV字型形状をした深い渓谷である(写真 - 1)。

メセタ自動車道の供用開始により、マドリードとサン タンデールをより早く安全に結ぶルートが形成された。 イベリア半島全域を南北方向に結ぶこの新しいルート は、この地域の開発過程を表す歴史的なランドマークと なり、カステリア地方のメセタあるいは平野の離れた地 域間交流を可能とし、経済的、社会的発展に大きく貢献 した。

写真 - 1 高架橋全景

2. 景観設計

モンタブリッツ高架橋は、非常に特徴的な環境地域へ の架設であったことから、その構造設計においては、周 囲の自然地域を含む環境価値に最大限配慮するよう、特 殊かつ高度な試みが要求された。構造形状決定と建設過 程においては EID (Environmental Impact Declaration:環 境影響宣言)の要求仕様を満足するよう定められたこと から、形状設計の広範囲に影響が及んだ。

EIDからの重要な要求のうちとくに言及を受けたのは、 本橋が位置する渓谷地域に直接的にも間接的にも影響を 及ぼすことのない架設方法関連についてであった。この ことは、本橋の計画高や橋脚位置の決定にまで影響を及 ぼした。

結果として,橋梁計画や路線設定,上部工の標準断面 形状,基礎地盤の地質・地盤工学,架設手順,経済性評価, 美観,環境に対する構造耐久性等に関して複数の案が計 画され,あらゆる条件要因のもとでの評価・分析を経て 最終案が決定された。

長く深い渓谷を跨ぐ規模の大きい公共施設であるため,在来工法(固定式支保工^{訳者注})では環境的,財政的 に実現が難しく,最終的に張出し架設工法を用いた PC 連続桁構造がもっともふさわしいものとして選定され た。支間長や径間数,脚高や脚形状は,渓谷の自然の中 でもある程度目立つように考慮された(図 - 1)。

本橋は高橋脚かつ長スパンを有する大規模高架橋であ ったことから,張出し架設工法の優位性が発揮可能であ った。この優位性とは,構造物の下方空間を自由に使用 できること,かぎられた橋脚リフト高や上部工セグメン ト長の中で型枠使用量が必要最小限となること,繰返し 作業で効率化が図られ生産性が向上すること,平行作業 によって施工速度を上げるなど柔軟な施工が可能となる こと等である。

混成林が生育する渓谷への影響が最小限となるよう に、橋脚は単柱形式とし、車道全幅を1室構造で支える 構造とした。なぜなら、上下線分離の二重平行構造の場

図 - 1 高架橋完成予想 CG

合、橋脚が占有する土地の面積も大きくなり、環境に与 える影響は大きくなる。渓谷の景観的な透過性を妨げな いよう、橋脚は過度に太くせず、スレンダーなイメージ を追求した。最終案は、非常にエレガントかつ力強く周 辺環境にマッチした形状となった。

中空構造で湾曲した外形線を有する4基の橋脚と,縦 横断方向に曲線を有する上部工の形状から,モニュメン ト的な外観が形成されている。床版上面の傾きと放物線 状の桁高変化,曲線状の線形計画が,本橋に大きな躍動 感,優美さ,深みを与えている。曲線線形による景観は, 直線を基調とした構造物が有する剛健さとはまた違い, しなやかさが表現されている。

3. 構造設計

本橋は,橋長 721 m の 5 径間連続 PC 構造であり,縦 断勾配は最大 5.57 %,平面線形は R = 700 m,横断勾配 は 8 % である。各支間長はそれぞれ 110 m, 155 m, 175 m, 155 m, 126 m である (図 - 2)。上部工を箱桁断 面とし長支間としたことは,曲げや引張に対し構造的に 効率的であるのみでなく,最適な荷重分配により非常に 軽量かつ強い上部工の実現に繋がった。

橋脚の断面形状は,壁厚の薄い中空矩形断面とした。 本橋は,最低でも使用耐用年数100年を満足するよう設 計された。

本橋は連続構造であることから,弾性変形以外に自重 および収縮やコンクリートのクリープ, PC 鋼材のリラ クセーションといった持続荷重に起因する二次的なゆっ くりとした変形が生じる。

中央橋脚の高さ(100 m 以上)および架橋位置(V字型の渓谷)を考慮した場合,交通による活荷重の影響に 比べて,架設時(構造完成前)の風による影響が大きかったことから,風による影響を詳細に分析する必要があった。

4. 主 桁

主桁の箱桁断面は、幅の広い上下フランジにより大き な正負の曲げモーメントに抵抗できる。閉断面構造によ って、ねじり剛性が高くなり、ウェブ厚を最小限にする ことができ、開断面よりも偏心荷重に対して十分に抵抗 することができる。箱桁断面は、張出し施工中の主桁の 静的・動的安定性にとって非常に重要である。

上部工は、全支間において放物線状に桁高変化を有す る全幅26.1 mの1室箱桁(現場打ち)で構成されている。 桁高は、柱頭部では最大高さ11 m、支間中央部や橋台付 近の桁高一定区間においては最小高さ4.3 mである(写 真-2)。ウェブの傾斜と上フランジ幅が一定で、桁高変 化を有するため、下フランジ幅は変化する。この幅は、 柱頭部では最小7.1 mとなり、支間中央部や橋台付近の 桁高一定区間においては最大11.9 mである。

写真 - 2 主桁下面状況(E2橋台から)

張出し床版や箱桁の上床版下面には、厚さ0.5 mの補 強リブが主桁の全長にわたって約5m間隔で配置されて いる(図-3)。補強リブの最大高さは箱桁内部では 1.1 m,両張出し床版においては0.25 mから1.1 mまで変 化する。下床版厚が0.6 mよりも小さい区間には、厚さ 0.5 m,高さ0.6 m一定の補強リブが等間隔で設置されて いる。上床版厚は、隔壁の設置区間では厚さ0.5 mであ り、それ以外は全長にわたって厚さ0.25 mである。主桁 のPC鋼材は上床版、ウェブの圧縮域およびその付近に 作用させる架設ケーブル群と、下床版、ウェブおよびそ の付近に作用させる連続ケーブル群とで構成されてい る。

径 40 mm の鉛直 PC 鋼棒は, せん断による斜引張応力 を制御するために, 平均配置間隔 0.8 m で配置されてお り, 引張応力の大きさに応じて配置間隔を設定している。

5. 構造解析

5.1 構造計算

一般的な主方向曲げの構造性能を検証するため、2次 元および3次元のモデルを作成した。構造物の時間経過 に伴った各施工段階は、2次元モデルにより逐次計算され、実材齢のコンクリートの弾性係数を用いることによ りその力学特性を表現した。また、プレストレスを各セ グメントに導入し、クリープ・乾燥収縮を考慮すること により PC 鋼材の張力履歴を明らかにした。3次元モデ ルを用いることにより、高架橋の平面曲線形状に起因す る応力、高架橋完成後に作用する活荷重およびその他の 荷重の影響を考慮したすべての応力が得られた。

まず,2次元および3次元のモデルを用いて,線形解 析を実施した。応力算出にはコンクリート総断面を用い, 材料は完全弾性体とした。

次に,高架橋の橋脚を評価および確認するため,3次 元のモデルを用いて施工中や構造系完成後における幾何 学的非線形性を考慮した非線形解析を実施した。

使用限界状態および終局限界状態における構造物全体 の非線形計算の実施に際しては,可能なかぎり幾何学的 形状や全断面における圧縮・引張鋼材の分布を考慮し, 現行の規定に示される材料特性の平均値を用いたうえで 材料強度を低減し,荷重係数により作用力を増加させた。

最初は,初期剛性を用いた線形計算からスタートした。 次に,幾何学的非線形性を考慮し,全鋼材の応力および ひずみを得た。この結果を用いることにより,モーメン

ト-曲率関係から、全断面における橋軸および橋軸直角 方向での軸力とモーメントを算出した。次に、初期値と モーメント - 曲率関係より得られた結果とを比較し、そ の違いがあらかじめ定めた一定の誤差よりも小さけれ ば、その計算が収束していたと判断する。誤差より大き い場合は、ひび割れ間の引張コンクリートの作用を考慮 し、モーメント - 曲率関係から新しい剛性を算出し、計 算が収束するまで繰返し計算を実施した。持続荷重や常 時作用力に起因するコンクリートのクリープ・乾燥収縮 やモーメント - 曲率関係の修正によって幾何学的非線形 で得られた応力を考慮することで、橋脚の変形が更に大 きくなり,初期変形は経時的に増大する。これが,初期 状態およびクリープ終了時における完成構造物の供用状 態について構造解析を実施する理由である。両解析では 異なるコンクリートの弾性係数を用いた主桁の横断面に 起こり得る変形を検討することを目的に、桁と橋脚をシ ェル要素によってモデル化した。この変形は接線方向と 垂直方向の応力から計算された。主桁の橋軸方向の基礎 計算は、前述の連続桁の2次元および3次元のモデルを 用いて実施した。さらに、偏心係数(基準に指定される 特殊な積載車両による応力を算出するときに適用され る)が解析モデルによって得られ、主桁の横断方向の曲 げおよび支点横桁部を別途解析した(図-4,5)。

幅 26.1 m の主桁は2段階で施工された。初めに箱桁断 面が張出し架設され,それぞれのスパンが閉合された後 に張出し床版が施工された。導入するプレストレスの大 きさは,架設時ではなく完成時の状態で最適化され決定 された。

5.2 特殊検討

モンタブリッツ橋の基礎設計を実施するために,架設時,地震,風,火災による応力作用下での橋の応答に関 する特殊な検討を実施した。 耐震検討では、架設時と供用時の周波数領域でのスペ クトル解析と完成構造系で行われる加速度入力による時 刻歴応答解析の2種類の解析を実施した。風に関しては 幾何学的非線形性と材料非線形性の両方を考慮したスペ クトル解析を実施した。火災に関しては、橋脚コンクリ ート中の熱移動に関して検討と鉄筋強度の劣化の可能性 についての検討を実施した。

橋の架設時と完成時に関する全体の検討は,設計を最 適化するために重要なものであった。

6.施 工

高架橋の施工は、2004 年 7 月に開始された。掘削完了 後, 杭基礎の施工がなされた。P1橋脚の基礎は、(ϕ 1.5 m, L = 30.0 m) × 49 本, P2橋脚およびP3橋脚の 基礎は (ϕ 1.5 m, L = 35.0 m) × 56 本の構成である。基 礎杭の施工後, P1 ~ P3橋脚のパイルキャップ, P4橋 脚 (直接基礎RAH) および両橋台のフーチングが施工さ れた。

本橋の4橋脚に対してクライミングシステムが採用さ れた。同システムは、全高において橋軸方向にも橋軸直 角方向にも曲線変化する形状に対応できるセルフクライ ミングシステムである(写真 - 3)。このセルフクライミ ングシステムは、作業床に門型クレーンが設置され、内 外型枠の着脱を安全かつ迅速に行うことができ、0.5 m/ 分の速度で移動作業車の様に移動可能である。すべての 橋脚のリフトでは、型枠が躯体に合うように調整可能で あり、天候に作用されず、かつ外部クレーンを必要とせ ずに型枠の取外しが可能である。

写真 - 3 セルフクライミングシステム

4基の橋脚は、4mリフトに分割され、おのおのセル フクライミングシステムを用いて同時施工された。各橋 脚の外側にはタワークレーンが配置された(写真 - 4)。 各リフトのサイクル工程は約5日であり、以下の手順

写真-4 P2・P3橋脚の施工状況

で施工がなされた。

- ① セルフクライミングシステムのリフトアップ
- ② 水平度の調整
- ③ 鉄筋の組立て(4箇所の隅角部と4箇所の中間部に8 分割された現場加工のプレファブ鉄筋を採用)
- ④ タワークレーンによる鉄筋の吊上げと最終位置への設 置
- ⑤ コンクリート打設および養生(前リフトと同等の強度 発現まで)

各橋脚のリフト数は, P1橋脚で15リフト, P2橋脚 で32リフト, P3橋脚で28リフト, P4橋脚で13リフ トであった。

本橋の場所打ちセグメントは、スペインにおいて最大 重量・最大規模を有するものとなっており、移動作業車 の重量 1400 kN,最大荷重 4 500 kN は、最大セグメント の重量である 4 200 kN から決定された。

鋼構造の移動作業車は、フレッシュコンクリート、型 枠および作業荷重を支持するものであり、セグメント小 口から 0.4 m の位置を支点とし、PC 鋼棒(移動作業車用 の固定アンカー訳者注)が1つ前のセグメント小口から 0.5 m の位置に配置された。箱桁断面両端部(ウェブ上訳 者注)のレールは、次のセグメントへの移動に用いられた。

主桁の施工は,柱頭部の鉛直横桁のある7m区間から 開始され,橋脚前後の主桁へと施工を進めた(写真 -5)。これらの柱頭部は,施工時において,両側に大規 模かつ等スパンの片持ち梁を形成するため施工時の安定 を図る目的で各橋脚と剛結された。

施工方法は、セグメントが自立または仮設材により保 持可能となる様に決定された。後続のセグメントは、移 動作業車が柱頭部に据え付けられた後、橋脚に転倒モー メントを作用させないように対称かつ4橋脚同時に張出 し架設された。各橋脚からの張出しセグメント間の工程 差は、全工程を通じて1セグメントのみとした。

写真-5 柱頭部の施工状況写真

張出し架設における非対称な不均衡応力としては、施 工上の誤差(セグメント重量の非対称性)、施工時荷重、 風荷重や施工中のコンクリート打設用機器の落下、移動 作業車の落下など稀に発生する偶発的な荷重コンクリー ト打設時の荷重がある。

主桁は、4~5mの長さのセグメントに分割された。 セグメント1サイクルは全行程平均で8日であり、以下 の手順で施工がなされた。

- 次のセグメント施工位置への移動作業車の移動(1つ 前のセグメントに据え付ける)
- ② 移動作業車の高さ調整の実施
- ③ 鉄筋および PC 鋼材の組立て(鉄筋は地組し,タワー クレーンで吊り上げて設置)

④下床版,ウェブおよび上床版のコンクリート打設

⑤ コンクリート強度発現後、プレストレス導入

P1橋脚・P4橋脚からの張出しは、両側に15セグメントであり、P2橋脚・P3橋脚からの張出しは、側径間 側に15セグメント、中央径間側に17セグメントである (写真 - 6)。

写真 - 6 張出し施工中の全景写真

橋台側の等桁高の側径間は,固定支保工により施工さ れた。第1径間の側径間は橋台および1基の仮支柱によ り支持され,第5径間の側径間は橋台および2基の仮支 柱により支持された。側径間閉合後,連続ケーブルによ りプレストレスが導入され,仮支柱が撤去された。 両橋台, 主桁の側径間閉合および主桁の張出し施工部 分の施工が完了した後, 各張出しの一体性と完成系構造 の一体化を確保するため, 閉合セグメントのコンクリー トを一括打設することにより中間支間の閉合が行われ た。

幅員 26.1 m の主桁は 2 段階で施工された。幅 15.7 m の箱桁部分は,張出し架設により施工を行い,各支間の 閉合後に片側 5.2 m の張出し床版を小型の特殊移動作業 車により施工を行った(写真 - 7)。全5 径間の閉合セグ メントは,8本の矩形閉断面を有する鋼桁からなる支保 工材を用いて施工された。第1径間および第5 径間の閉 合セグメントが上述の支保工により最初に施工された。 次に第2,第4 径間の閉合セグメントが施工され,最後 に第3 径間が閉合された(写真 - 8)。その後,両端およ び中央分離帯の壁高欄が施工され,床版防水,舗装およ び仕上げ工の施工を実施して完成した。

写真 - 7 小型特殊移動作業車による張出し床版の施 工状況写真

写真 - 8 閉合セグメント施工状況写真

7. 実験的解析

7.1 計測装置

本橋は大規模であることから,建設中および供用時の 風,交通による応力作用下で構造的な応答をモニタリン グする必要があると考えられ,静的・動的に計測できる 装置を設置した。

これらの計測装置は橋梁の物理的振幅を計測するもの であり、温度、鉄筋のひずみ、橋脚と主桁の傾き、風向、 風速および加速度などをリアルタイムに記録し、コンピ ユータのデータ収集システムを用いて集約する。構造物 においてもっとも重要なパラメータである橋脚基部、脚 頭部、張出し先端の移動量、橋脚および主桁の代表的な 断面での応力、橋脚の橋軸および橋軸直角方向や主桁の 鉛直および水平方向の温度勾配などをモニタリングする 目的がある(図 - 6)。

本橋の建設中および供用時の初期まで継続した計測は 実物大試験そのものであり、スペインにおけるこの規模 の高架橋において先駆的なデータとなる。スペインの開 発省との共同作業のもと、データはこの規模の高架橋の 設計・施工における規準の礎となる。

7.2 風洞試験

高架橋と渓谷の場所柄の特性から,橋梁に作用する風荷重を正確に求めるため,この種の経験が豊富な Force Technology 社に依頼して,解析と2種類の風洞試験を行った。

(1) 試験1:空力係数と渦の発生

試験1の目的は,渦出現の可能性を調査することと, 主桁に作用する水平方向の推力,鉛直力とねじりモーメ ントに関する空力係数を設定することであった。

張出し床版を有しない箱桁断面のみの張出し架設時, 張出し床版が施工された構造完成時,高欄および中央分 離帯を有する供用時の3段階を想定して試験を実施した。 張出し床版と高欄および中央分離帯は後のち分解できる ように,主桁と一体ではないべつ部材とした。

本橋でもっとも高い P2 橋脚と P1 橋脚側, P3 橋脚側

の支間半分の主桁をモデル化した T 型の構造に,平面曲 率,主桁のそり,橋軸方向の勾配や主桁高さ・幅員の変 化を忠実に再現した 1/200 スケールの模型を作成した。

主桁の曲率の影響を解析するため、橋軸直角方向の2 方向から気流を与えた(写真 - 9)。

写真 - 9 風洞試験における主桁モデル

225°方向からの気流によって、もっとも高い空力係数 が得られた。計測は主桁からモデル上で0.15m離れた位 置で行い、橋脚位置に1点、橋脚から実寸法に換算して 20mの等間隔位置でP1側・P3側にそれぞれ3点の計 7点で実施した(写真 - 10)。

主桁に作用する静的荷重を正規化し,無次元の抗力係 数とP2橋脚頂部に対応する鉛直・ねじりモーメント係 数を得た。

P2橋脚頂部に発生する作用力と抗力係数が直接的に 比例するので,主桁の各断面での空力係数を同風速条件 下における試験からの揚力と現行の規準 "IAP-98" から 計算される作用力の比率を用いて求めた。橋脚の抗力係 数は,本モデルと良く整合するためユーロコードを用い て求めた。

得られた抗力係数によって,風による推力および派生 する応力を低減することが可能となり,橋脚の大きさ, 杭長を最適化することができた。

写真 - 10 P2橋脚張出しにおける気流

(2) 試験 2:地形モデル

試験2の目的は,渓谷と高架橋に橋軸および橋軸直角 方向に作用する風速と乱気流の強さを調査することであ った。

高架橋が建設される 65 km² エリアの実地形を 1/1600 の 3D モデルで作成し (写真 - 11),高架橋に 12 点設け た観測ポイントで風速を計測した。構造的にもっとも高 い P2 橋脚に 4 点,残りの 8 点を支間中央と柱頭部に設 置した。

実験結果より, 橋軸方向の風速は橋軸直角方向の風速 の半分程度であった。これは橋軸方向の風は地形の影響 を受け, 半減するからであった。気流の可視化のためへ リウム気泡を用い, 各方向の卓越した気流や気流のはく 離, 再循環性のある乱気流の存在の有無を確認した。

これら2種類の風洞試験から橋梁に作用する風速の諸 元および渓谷の地形による気流に対する影響を評価する ことが可能となった。

This article was first issued in ACHE (Asociación Científico-Técnica del Hormigón Estructural), Hormigón y Acero (Concrete and Steel), Vol.59, No.248, page 09-40

MIGÓN ACERO http://www.e-ache.com

写真 - 11 渓谷の 3D モデル

 *:プレストレストコンクリート海外部会委員 - 藪本 篤(首都高速道路(株))
秋山 博(株) 袋高組)
友成 弘樹(株) IHI インフラ建設)
白浜 寛(鹿島建設(株))
横田 剛(株) ピーエス三菱)

【2012年10月2日受付】