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Introduction

Concrete bridges that were constructed recently become more complicated in architectural apparent,
functionality and design. Its mechanical behavior is consequently more complex and hardly to be estimated by
traditional structural mechanics formulations. Prestressing system is introduced in designing of the concrete bridge
results a thinner, stronger, and lighter structure. Those terms define sufficiently the structural performance of the
structure. But in term of “safety”, how much can we conclude that when will the structure fails, how it fails, and is the
design load safe enough compared to the structural ultimate load capacity. Designing of prestressed concrete structures
in general is performed based on an elastic analysis. Some engineers applied the safety factor to compensate an
uncertainty in designing method, construction workmanship as well as nonlinearity of material and geometrical
properties. However, how can we ensure that those selected safety factor and designing methods were corrected.
Moreover, the complicated concrete structure, for example the PC box-section shell bridge, behaves in a very
complicated way and its failure mode cannot be concluded based on only design drawing. Once the ultimate capacity
and failure pattern of the structure accompanied with the design load are known, safety of the structure can be logically
concluded. Not only the safety of the structure subjected to service load, but its maintenance planning, repairing and
rehabitation are also possible applications.

In this paper, systematic procedures to estimate or predict the ultimate behavior and failure mode of the
general unbonded prestressed concrete shell structures are presented. The application of the proposed method is shown
through the analysis of PC box-type shell bridge, namely Kujira Bridge, which is made by thin prestressed concrete
shell having a span-length of 100 meters. By the aid of a robust concrete constitutive equation, the Lattice Equivalent
Continuum Model or LECM, applied to the nonlinear FEM program with a treatment of incompatibility of the
unbonded prestressing tendon, complicated analysis of unbonded PC shell structures becomes possible.

Concrete governing model

The Lattice Equivalent Continuum Model, briefly called LECM, is used as constitutive equations to govern
behaviors of the cracked concrete element (reinforced concrete). Basic concept of this model is representing concrete
and reinforcement of a reinforced concrete element by a system of lattices that possess uniaxial properties of the
corresponding lattice. Stress components relation between global stress field and those of the lattice system is
considered by using a concept of micro-plane model. Unlike conventional tensorial models that relate the components
of the stress tensor directly to the components of the strain tensor, micro-plane model work with stress and strain
vectors on a set of planes of various orientations (so called microplane). The basic constitutive laws are defined on the
level of the micro-plane and must be transformed to the material point using a certain relations between tensorial and
vertorial components. Based on the microplane that changes its direction according to the propagation direction of
concrete crack, stress-strain relation of corresponding lattice component can be appropriately expressed. Consequently,
the complicated characteristics of cracked reinforced concrete element can be avoided. Moreover, by applying uniaxial
properties to each lattice component, nonlinear behavior material even the more complicated hysteretic rules (loading-
unloading behavior) of concrete and reinforcement can be independently defined. In addition, not only concrete and
reinforcements that were been replaced by system of lattices, extra lattice system is needed to represent the contribution
from shear transfer, which is one more feature of this model. Detailed formulation for each lattices system and material
properties can be referred from reference papers.

Prestressing tendon formulation

The geometry of the tendon course is formulated based on local curvilinear coordinate system, which is
possible for fully curved prestressing tendon. An embedded type tendon course is assumed, in which the tendon course
can be freely defined on both in-plane and out-of-plane of the respected parent shell element, using the cubic
interpolation function. The force components contributed from each tendon section are in both tangential and normal to
the tendon alignment, in which the intermediate coordinate system, the so-called moving trihedral, is required to be
calculated at any point along the tendon course. These force components are then carefully added to the parent internal
force terms to retain a balance of the internal forces system. The stiffness contributed from prestressing tendon can be
calculated by rotating the tendon axial stiffness to the global frame, and then added to the parent stiffness.

A free body diagram of segment of prestressing tendon passing an element is shown in the Fig.1. Let the
tendon cross-sectional area is Ap having a tangential Young’s modulus of £ . Both ends crossing the boundary of the
element is defined by point P and Q, possessing tangential vector of t, and {7 , respectively. Two internal prestressing
forces, namely P, and PQ , are acting at these two ends. Component of distributed force along tangential direction is
P, » normal component heading to the center of curvature is p, . These two distributed components can be written in
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vector form as a vector P. By using the prestressing tendon axial strain-displacement matrix, £, = B A, a virtual
work equation for prestressing tendon can be written as in eq.(1).
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Fig. 1 Free body diagram of tendon segment
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Rewriting eq.(1) into more concise form, the equilibrium of prestressing tendon can be expressed as in the
following equation.

Ka+R, =P, @
where

K, =4, [E,B] ®B,ds, P, = [N'pdS+ P,Njt, - P,Nyt,, R, = 4, [B]o,,ds ®
r r r

In bonded tendon prestressing system, the axial strain-displacement relation matrix B p can be obtained by
transform for parent strain field to the axial tendon strain respected to the moving trihedral. The parent strain field is
defined in £17¢ coordinate system, which is equivalent to the strain field calculated from reinforced concrete element.
The parent strain field is then transformed into moving trihedral system, tnb system, by using the transformation
matrix, T, as €;, = Trsgﬂ;T .

Strain component that is considered in the tendon is only the axial component, €; , which is corresponding to
the tangential component, t, of the moving trihedral. By removing the unwanted strain components, the tendon strain
(axial strain) can be expressed as in the following equation.

8P=C{6‘¢ £ & Vu Vi y”;}T=Cec=CB[xp(t)]a=Bp(t)a )
where

B, (f)=CB[x,(1)] 6)
By a substitution of eq.(5) into eq.(3), stiffness matrix contributed by prestressing tendon for bonded problem can
be obtained.
In the case of unbonded prestressing system, the B matrix is more complicated than as expressed by eq.(5).
The total increment of concrete along the tendon length shalf]be equal to elongation of prestressing tendon, which can
be mathematically expressed as

L’scds =,Z:1:“: CB, (xp (t))ds}ai =Au, ©

where £, is concrete strain along the tendon length, / is a total length of prestressing tendon, » is a total number of
element that prestressing tendon passing through, B, is a strain-displacement matrix of parent element, and Aup is a
total elongation of the prestressing tendon.

In the case of no friction if considered, tendon strain shall be the same through the length of tendon, that is

__Azp__,."é[ﬂ'CBf(xp(t))ds}
o Z [ gt !

Stiffness matrix for unbonded system, can also be calculated by using the eq.(7). Nevertheless, unlike the
bonded case, integration range shall be done upon a total prestressing tendon length, in which the dimension of stiffness
will be depending on the number of element that prestressing tendon passing through. Assembling of the stiffness
matrix is performed component by component to the corresponding degree of freedom.

M
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Analysis of the Kujira Bridge Sidevion

A semi-arch type box-section 7.506 Total length 307;); 799
prestressed concrete bridge located in Inagi Spinlongth 1003
district, Tokyo, is selected for a study of its
ultimate behavior. The bridge, namely
“Kujira Bridge”, was a pedestrian
prestressed concrete bridge that connects
the Inagi main park to the Secondary Park
located about 100 meters away. Cross-
section of the bridge is a portal shape, as
shown in Fig. 2. Its height and width vary -
from 5.960 m, 24.386 m at the support to . Tt
2.000 m, 16800 m at the center,
respectively. The bridge has a span length
of 100.5 meters, supported by both fixed-
end supports. Because of the completely
fixed-ends, the bridge has a very high
degree of statically indeterminate regarding
prestressing in bridge axial direction.

Unbonded prestressing tendons
(12T15.2) are located in five locations: top-
slab at the support side, lower-slab at the
bridge center, middle-wall inside the portal,
sidewall inside the portal, vertical tendons
at support, see Fig. 3 for tendons alignment
in the analysis model. The vertical tendons
are used to fasten the bridge end to the
support. However, instead of adopting the
vertical tendons, end boundary conditions
in the analytical model are fixed as a
substitute. Thickness of the middle-wall
and sidewall is moderately large so that
these walls are functioned as a shear-
resisting member. Due to its geometrical
complexity, the ultimate behavior including
failure mode cannot be predicted by
traditional procedures.

The bridge was analyzed by one-fourth model as shown in Fig.
3 using 658 3D shell elements, in which ten independent unbonded
tendons are introduced. Initial prestressing stress in each tendon is set to
900 N/mm?’. In the analysis, boundary conditions at the support are set
to free prior to prestressing. The prestressing stress is gradually
increased from zero to its proper limit (all the tendons at the same
time). After the tendons have been prestressed, boundary conditions at
the support are intermediately changed to a completely fixed type by B
keeping displacement at support constant. Boundary condition of the Fig. 3 FE mesh and tendons alignment
nodes elsewhere is set regarding the symmetry effect of the bridge. Distributed load is then applied on the edge of the
middle-wall and sidewall. The total applied load and vertical displacement at the center of the bridge relation is shown
in Fig. 4, including the analytical result when prestressing stress has been removed. At the stage just after tendons are
fully prestressed, the mid-span is vertically deformed up about 74 mm. As mentioned previously, the support (the bigger
cross-section) has not been fixed in the axis-direction at the prestressing phase. Thus, the bridge shrank a bit after
prestressing is applied. Due to the application of vertical distributed load, the bridge bends back to it original stage
when the load reached about 4788 kN. The structure continues to resist vertical load with stiffness close to its initial
stiffness until the load reached about 11000 kN. With more application of the vertical load, stresses at the element near
center of the bridge are changing from compression to tension state, stiffness of the bridge decreases gradually until the
middle wall near the center failed. These concrete stress distribution conditions are shown in Fig. 5. The whiter color
the more compression. Inversely, the darker color the more tension. The leftmost figure shows the state just after all
tendons are prestressed. Middle figure show the stage when the bridge stiffness started to decrease. The rightmost show
the ultimate state, with a failure of the middle wall near the bridge center. It can be seen from the stage just after
prestressing (obviously in the top-slab at support side and in the lower-slab at the bridge center) that compressive stress
concentrates at the element that the tendons passing through and gradually distributed to adjacent elements. Distribution
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Fig. 2 Geometry of the Kujira Bridge
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of tensile stresses can also be seen from the figure,
but its scale does not cause any tensile crack. These

VOU
compressive stresses change it stage gradually from
minus to plus as the bridge is bending. At the stage g 1800 _—
just before failure, the stress distribution is very g 1600 /
scatter due to partial stress concentration and 8 400
difficulty to obtain the converged solution from the - /
analysis. The bridge is finally failed by shear failure % 1200 / Design Load
in the mid-wall near the center of the bridge, as = 10000" /-
shown in Fig. 5, with an ultimate load about 17000 ] 8000 prad
kN. Comparing to the estimated design load, 10000 S / //
kN, the bridge is quite standing in the safe side. s / —
Regarding to the analytical result, ductility at ultimate 1l —FPC H
is almost four times of that at design load level, ﬁ / — (O
strength at about 1.7 times. Sections of the bridge at /

the center and the support are deformed concavely as
shown in the figure. In the analysis at ultimate stage,
convergent of the solution was getting harder due to i ;
localized failure of the bridge. Convergent of the Fig. 4 Load-displacement relation
solution stop suddenly once the applied load reached

about 17000 kN. This might caused by a very

complicated deformation, for example, the snapback

due to the complicated thin shell structure.
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Fig. 5 Bending stress distribution at various states (50x)

Conclusion

Introducing of the prestressed concrete formulation accompanied with the reinforced concrete formulation
(LECM) to the nonlinear FEM and shell formulation, the ultimate behavior of the unbonded prestressed concrete shell
structure can be predicted which aids in safety judgment, maintenance and rehabitation planning of the concrete
structure. Moreover, capability in predicting ultimate state of the structure is exceedingly needed in redesigning and
finally yields safer and more reliable concrete structures.
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