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1. INTRODUCTION
One of the latest developments in prestressed concrete technology has been the use of external

prestressing, which may be defined as a method of prestressing where major portion of the tendons is
placed outside the concrete section. The ultimate flexural analysis of such beams offers an additional
difficulty, in comparison to the beams with bonded tendons. The stress increase in the external tendons
beyond the effective prestress due to applied loading is member dependent rather than section dependent.
It has been shown by Matupayont [1] that the eccentricity variations could have a marked influence in the
ultimate strength of externally prestressed beams. As such, it is necessary to consider the change in tendon

position at ultimate state in the case of external prestressing for a better prediction of the ultimate strength.

It is possible to predict the overall flexural behavior of an externally prestressed beam using a nonlinear
analytical methodology consisting of a multi-level iterative technique [2]. However, this methodology is
fairly complex and it is necessary to establish a simplified accurate design equation for practical situations.
A design equation was proposed in a previous study considering the eccentricity variations. [2]. Based on
a similar approach, a simplified modified equation was proposed incorporating the other factors that
influence the ultimate tendon stress [3]. In this study, an attempt has been made to extend this equation to

predict the tendon stress of continuous beams with various loading configurations.

2. BASIS OF THE PROPOSED METHODOLOGY
The general form of the ultimate tendon stress for unbonded tendons can be expressed as follows:

fps = fpe + Afpx @

Where f,, is the ultimate tendon stress, f,, is the effective initial prestress and Af, is the increase of
tendon stress. In the existing prediction equations the estimation of Af, varies based on the equations. An
equation was proposed by Naaman [4] for the prediction of ultimate tendon stress in beams with unbonded
tendons, based on the concept of strain reduction coefficient €,. This reduces the member dependent
analysis to a simplified section dependent analysis. This equation was later adopted by AASHTO (1994)
[5]. The applicability of the above equation to beams with external prestressing was carried out by
Mutsuyoshi [2] and was found that it is necessary to take into account the change of tendon position at
ultimate state. As a result, the concept of depth reduction factor R, that estimates the ultimate tendon

position, was introduced and the following equation was proposed.

d"
fos = fre + EpsQuecu(—g—_ 1) < S @
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Where E, is the modulus of elasticity, €, is the ultimate strain of concrete at the topmost fiber, c is the
neutral axis depth and f,_is the yield strength of prestressing steel and the ultimate tendon position d,, is

given by the following expression:
dpw = Radps 3)

Where d, is the effective depth of tendon. The above equation has given the best results among all the
prediction equations. However, the limitation is that it cannot be used for beams with combined
prestressing consisting of internal bonded and external tendons. As such, the proposed equation was
modified and a new equation was proposed to incorporate the important parameters including the influence
of internal bonded tendons. The equations obtained for the strain reduction coefficient €, and depth

reduction factor R, through regression analysis are expressed as follows:

(a) Strain reduction coefficient £, ;

A s,in . .
. = -2 +O.21( o ") + 0.06 for two-point loading )
(L/dm) Apsior.
(b) Depth reduction factor R, ;
- L Sd ) .
R; = 125 -0.010 0 ~0.38 T < 1.0 for two-point loading (5)
ps

in which, L is the span, S, is the distance between the deviators, A, ,,, is the area of bonded internal tendons
and A, is the total area of tendons. By substituting Eqgs. 4 and 5 in Egs. 2 and 3, the expression for f,,
can be obtained. Considering the equilibrium of forces at the critical section, the neutral axis depth ¢ can
be computed and Eq. 2 will yield the value for f,.. Once f,, is known the ultimate flexural strength M, can
be calculated as explained in reference [4]. In the case of uniform loading the equation for third-point
loading can be used, since the moment diagrams of these two loading patterns are approximately the same.

3. EXTENSION OF THE PROPOSED EQUATION FOR CONTINUOUS SPAN BEAMS

3.1 Concept Used in Proposed Equation
Experimental investigations [6] have shown that the increase in the ultimate tendon stress in

unsymmetrically loaded continuous beams is significantly small compared to the fully loaded beams as
shown in Fig. 1. This could be attributed to the
smaller deflection of the lightly loaded span in the
unsymmetrical loading. In a continuous beam, after
the formation of the plastic hinges the whole beam
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Fig. 2 Comparison of deflected shape of continuous beam with singie span beam

the simply supported single span beam. As such, it is believed that the prediction equation for single span
beams could be used for the symmetrically loaded continuous beams. However, to use the same design
equation for partially loaded continuous beams, a reduction factor X is proposed in this study to

incorporate the feature of smaller stress increase.

3.2 Parametric Evaluation

Using the non-linear analytical methodology [7], the effect of partial loading on the ultimate behavior of
continuous beams was studied by conducting a parametric analysis. For evaluation purpose a 2-span beam
with two point loads on each span was used as shown in Fig. 3. The variables used are the span-to-depth
ratio (L/d,,) and the loading ratio (L,z/L,,). The loading on right span (L, ;) was varied while the left span
was fully loaded (L, ). These are summarized in Table 1. The combination of the above two variables led
to a total number of 55 cases that were evaluated in this study.

Table 1. Summary of variables used in parametric evaluation

No. Description of variables Range Increment No. of cases
Span-to-Depth ratio (L/d, ) 15-35 5 5
2 |Loading ratio (L, /L,,,) 0.00-1.00 0.1 11
Total number of combination 55

I Loading span =Lp I | Loading span=Lp I
External tendorn
\\
/\_l\‘ Doviator distance = Sd J/TT*l Deviator distance = Sd 2 t
of e

Span length = L Span longth = L f

Typical section

F

Fig. 3 Model of 2-span continuous PC beam used in the parametric evaluation
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4. PROPOSED EQUATION o }'
= O L/Dps=10 j
4.1 Reduction Factor A [ v Lmpssts i
The result of the parametric evaluation is £ & LiDps20 S
0 B
o . ® 06| O LDps=25 Py
summarized in Fig. 4. It is observed that for lower 3 o L/Dps=30 SR
load ratio, the increase in tendon stress ratio was & . 0=3 S A
£ 04} _ R
almost negligible. However, for load ratio above g ) Z'; X &
0.5 it is significant. The best fit obtained for the g o2 /-',/.
reduction factor A can be expressed by the & o W
e
following relationship: o0m——H 1 !...L-.g-:';"-_%._‘ T e
0.0 0.2 0.4 0.6 0.8 1.0
P\ Loading ratio
- p * * 3 e . °
A= (F;) (6) Fig. 4 Reduction in Afps with loading ratio

Where P, is the partially applied load and P, is the ultimate design load in the span under consideration.
In this equation o is a constant which can be assumed to be between 3 to 5. Further research is
recommended to obtain the most suitable value for o.. It is also possible to model the above relationship

by a bi-linear or tri-linear equation.

4.2 Extension for Multi-Span Beams ‘
For multi-span continuous beam this equation can be extended further incorporating the effect of
different span lengths. The above equation can be extended by proportionally distributing the reduction

factor among each span, as given below:

_ LB’

Where n is the total number of spans, L, is length of the i span and L, is the total length of the tendon
between anchorage points. The reduction factor expressed in Eq. (7) is introduced in the basic expression
given by Eq. (2) and the modified equation for continuous span beams shall be as follows:

dpu
fp.\‘ = fpe + }\-nEpsQuscu(_g‘ - 1) < f!’y (8)

From Eq. (8), using the similar procedure of single span beams the ultimate tendon stress can be calculated
as explained in [4]. In evaluating the value of reduction factor A in a multi-span beam, it is necessary to
consider the loads in each span and the length of them. Table 2 gives some typical load configuration of
two span and three span continuous beams, and the corresponding value of A depending on the loading
condition. It can be seen that the value of A increases when the number of fully loaded span is high. Once
the ultimate stress in a continuous beam is obtained by the above procedure, it is possible to calculate the
ultimate strength of the critical points. However, in the case of support moments the depth reduction
factor R, should be taken as unity, since there is no change in tendon position at the support due to the

presence of a deviator.
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Table 2. Evaluation of A in continuous beams

No. of span Loading configuration Value of A (0.=3)
S v=Lepeleay=n
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FELED, [ f b ) o
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f\\‘f ‘ L 4 L ) 3 3 3 '
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1)’ .1 3.2 (1
(3) +30 +§*(5) = 0963

4.3 Comparison with Experimental Results

The accuracy of the proposed design
equation is compared with the other design
equations using the available experimental
results of seven two span continuos beams
with symmetrical and unsymmetrical loading
as shown in Fig. 5. The accuracy of these
equations is ‘evaluated by the statistical
analysis which is given in Table 3.
Considering the ultimate tendon stress, the
proposed equation gives an average
correlation of 1.03 with the coefficient of
variation (C.V) of 3%. The other prediction
equations generally give a low average
correlation and the coefficient of variation is
also about 5%. In the prediction of ultimate
strength, the proposed equation either give
an average correlation of 0.98 with the C.V
of 3%. It should be noted though the
AASHTO (1994) equation gives a C.V of
3% the average correlation is about 9%
higher than the observed values. As such it
is concluded that the proposed equation
predicts the ultimate tendon stress and
flexural strength of continuous beams with a

better accuracy.
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Fig. 5 Comparison of the accuracy of the prediction
equations for continuous beams
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Table 3. Evaluation of accuracy of prediction equation

Ultimate tendon stress Ultimate strength
Design Equation Average correlation Coefficient of Average correlation Coefficient of
Variation Variation
Proposed 1.034 2.98% 0.984 3.24%
AASHTO (1994) 1.059 4.47% 1.085 3.24%
PCI in Japan 0.832 5.44% 0.964 4.67%
ACI 0.907 5.53% 0.960 5.00%
BSI 1.007 5.59% 1.042 4.76%

5. CONCLUSIONS
A new design equation has been proposed for the prediction of the ultimate flexural strength of

externally prestressed members. This equation is extended to predict the tendon stress of continuous
beams with various loading configurations. The conclusions from this study are as follows.
® The span-to-depth ratio was the most important factor that affects the ultimate tendon stress in the
beams with external or unbonded tendons.
@ The ultimate position of the external tendon is greatly influenced by the deviator distance-to-span ratio,
thus affecting the ultimate flexural strength of such beams. ‘
® The ultimate tendon stress in partially loaded continuous beams are considerably small compared to the
fully loaded beams. This is incorporated in the proposed design equation by introducing a reduction
factor. Evaluation with experimental data shows good correlation.
® It is recommended that the accuracy of the proposed equation should be evaluated with other

experimental investigation available for continuous PC beams.
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